
CIS 4004: JavaScript – Part 3 Page 1 © Dr. Mark Llewellyn

CIS 4004: Web Based Information Technology

Summer 2014

Introduction To JavaScript – Part 3 – More On Events

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cis4004/sum2014

CIS 4004: JavaScript – Part 3 Page 2 © Dr. Mark Llewellyn

• To make your web application respond to user actions on the

page, you need to do three things:

– Decide which events should be monitored (listened for).

– Set up the event handlers that trigger functions when events

occur.

– Write the functions that provide the appropriate responses to the

events.

• As you’ve seen in the previous JavaScript notes, an event is

issued as the result of some specific activity – usually user

activity, but sometimes browser activity such as a page load –

and that you handle the event with an event handler.

JavaScript – Part 3 – More On Events

CIS 4004: JavaScript – Part 3 Page 3 © Dr. Mark Llewellyn

• An event handler is always the name of the event preceded by

“on” ; for example, the event click is handled by the

onclick event handler.

• The event handler causes a function to run, and the function

provides the response to the event.

• The tables on the next two pages lists some of the more

commonly used event handlers. For a more complete listing

see: http://www.w3.org/TR/DOM-Level-3-Events/

JavaScript – Part 3 – More On Events

http://www.w3.org/TR/DOM-Level-3-Events/

CIS 4004: JavaScript – Part 3 Page 4 © Dr. Mark Llewellyn

JavaScript – Part 3 – More On Events

Event Category Event Triggered When… Event Handler

Browser Events Page completes loading onload

Page is removed from browser window onunload

JavaScript throws an error onerror

Mouse Events User clicks over an element onclick

User double-clicks over an element obdblclick

The mouse button is pressed down over an

element

onmousedown

The mouse button is released over an element onmouseup

The mouse pointer moves onto an element onmouseover

The mouse pointer leaves an element onmouseout

CIS 4004: JavaScript – Part 3 Page 5 © Dr. Mark Llewellyn

JavaScript – Part 3 – More On Events

Event Category Event Triggered When… Event Handler

Keyboard Events A key is pressed onkeydown

A key is released onkeyup

A key is pressed and released onkeypress

Form Events The element receives focus onfocus

The element loses focus onblur

The user selects type in text or text area field onselect

User submits a form onsubmit

User resets a form onreset

Field loses focus and content has changed

since receiving focus

onchange

CIS 4004: JavaScript – Part 3 Page 6 © Dr. Mark Llewellyn

• An event handler can be utilized inline by attaching the event

handler directly to an element, such as:

<input type=“text” onblur=“doValidate()” />

In this case, a form text field has the JavaScript function
doValidate() associated with its blur event – the function

will be called when the user moves the cursor out of the field by

pressing Tab or clicks elsewhere. The function could then check

if the user typed something in the field or not.

• While inline event handlers have been used for a number of years,

they are not ideal as they mix the HTML and the JavaScript, and

these should be separate. In a modern web application – in the

interests of accessibility, maintainability, and reliability – you

want to keep JavaScript and CSS out of your HTML markup.

Inline Event Handlers

CIS 4004: JavaScript – Part 3 Page 7 © Dr. Mark Llewellyn

• The example below illustrates the way that we’ve mostly thus

far have utilized the event handlers in our JavaScript examples

(see JavaScript – Part 2 notes).

var clickableImage = document.getElementById(“dog_pic”);

clickableImage.onclick = showLargeImage;

• In this example, first the object representing the HTML element

with the id = “ dog_pic ” is assigned to the variable

clickableImage. The event handler onclick is

assigned as a property of the object, using a function name as

the onclick property’s value. The function

showLargeImage will run when the user click on the

element with the id = “dog_pic”.

The Handler As An Object Property

CIS 4004: JavaScript – Part 3 Page 8 © Dr. Mark Llewellyn

• The technique shown on the previous page has the desirable

property of keeping the JavaScript out of the markup since this

would appear only in an external JavaScript file and not in the

markup.

• However, there are a couple of rather serious drawbacks to this

approach.

• First, only one event at a time can be assigned using this

technique, because only one value can exist for a property at

any given time. You can’ t assign another event to the
onclick property without overwriting this one, and for the

same reason, another event that was previously assigned is

overridden by this one.

The Handler As An Object Property

CIS 4004: JavaScript – Part 3 Page 9 © Dr. Mark Llewellyn

• Second, when the user click on this element and the function is

called, the function has to be hard-coded with the name of the

object so that it knows which element to work on.

function showLargeImage() {

thePicture = document.getElementById(“dog_pic”);

//do something with the picture

}

• If you change the object that is the source of the event, you will

also need to modify the function.

The Handler As An Object Property

CIS 4004: JavaScript – Part 3 Page 10 © Dr. Mark Llewellyn

• For the two reasons just explained, the “handler as an object

property” technique is suitable for use only when you just want

to assign one event to one object, such as running an initial

onload function once the page is first loaded.

• This technique does not really provide a robust solution for use

throughout a RIA (Rich Interface Application, i.e. web pages

with user interaction often incorporating AJAX – later this

semester), where events commonly get assigned and removed

from objects as the application runs.

• In almost every such case, the best way to manage events is to

use event listeners.

The Handler As An Object Property

CIS 4004: JavaScript – Part 3 Page 11 © Dr. Mark Llewellyn

• Event listeners were introduced with the DOM model

and provide comprehensive event registration.

• An event listener does what its name suggests: After

being attached to an object (a node in the DOM), it

then listens patiently for its event to occur. When it

“hears” its event, it then calls its associated function in

the same manner as the “ handler as an object

property” method but with two important distinctions.

Event Listeners

CIS 4004: JavaScript – Part 3 Page 12 © Dr. Mark Llewellyn

• First, an event listener passes an event object containing

information about its triggering event to the function it calls.

• Within the function, you can read this object’s properties to

determine the target element, the type of event that occurred –

such as click, focus, mousedown – and other details about

the event.

• This capability can reduce coding considerably, because you

can write very flexible functions for key tasks, such as handling

clicks, that provide variations in the response depending on the

calling object and triggering event. Otherwise, you would have

to write a separate, and probably very similar, function for

every type of event you need to handle.

Event Listeners

CIS 4004: JavaScript – Part 3 Page 13 © Dr. Mark Llewellyn

• Second, you can attach multiple event listeners to a single

object.

• As a result, you don’t have to worry when adding one listener

that you are overwriting another that was added earlier, as you

would when assigning an event as an object property.

• Both W3C-compliant browsers and Microsoft browsers enable

event handlers, they differ in how those handlers are attached to

element and in the way they provide access to the event object.

• We’ll focus on the W3C approach, which will be the de facto

standard in the future. I’ll show you both techniques as well as

a work around that will enable the JavaScript to determine

which browser the user is using.

Event Listeners

CIS 4004: JavaScript – Part 3 Page 14 © Dr. Mark Llewellyn

• The W3C technique for adding/registering an event

handler is the method addEventListener()

which takes three arguments:

– The first is the name of the event for which you are

registering the handler.

– The second is the function that will be called to handle the

event.

– The third is either “true” or “false”. Typically, this will be

false. When true is used this relates to event bubbling

(covered later).

• An example is shown on the next page.

Event Listeners – W3C Technique

CIS 4004: JavaScript – Part 3 Page 15 © Dr. Mark Llewellyn

• Example:

emailField=document.getElementById(“email”);

emailField.addEventListener(‘focus’, doHighlight, false);

email.Field.addEventListener(‘blur’, doValidate, false);

• The function doHighlight would be called when the cursor

moves into the field, and the function doValidate would be

called when the cursor moves out of the field.

• As many event listeners as you would like can be attached to an

object in this fashion.

• The next two pages illustrate simple event handler registration.

Event Listeners – W3C Technique

Get the object

Add a focus listener

Add a blur listener

CIS 4004: JavaScript – Part 3 Page 16 © Dr. Mark Llewellyn

The HTML5 markup

CIS 4004: JavaScript – Part 3 Page 17 © Dr. Mark Llewellyn

The JavaScript

CIS 4004: JavaScript – Part 3 Page 18 © Dr. Mark Llewellyn

• Event listeners can be removed (unregistered) in a similar

manner by using the removeEventListener method.

• Example:

emailField=document.getElementById(“email”);

emailField.removeEventListener(‘focus’, doHighlight, false);

email.Field.removeEventListener(‘blur’, doValidate, false);

Event Listeners – W3C Technique

Get the object

Remove the focus listener

Remove the blur listener

CIS 4004: JavaScript – Part 3 Page 19 © Dr. Mark Llewellyn

• Microsoft’s event registration model is slightly different than

the W3C technique.

W3C: emailField.addEventListener(‘focus’, doHighlight, false);

Microsoft: emailField.attachEvent(‘onfocus’, doHighlight);

• Similary, Microsoft’s event listener removal is also slightly

different than the W3C technique.

W3C: emailField.removeEventListener(‘focus’, doHighlight, false);

Microsoft: emailField.detachEvent(‘onfocus’, doHighlight);

Event Listeners – Microsoft Technique

CIS 4004: JavaScript – Part 3 Page 20 © Dr. Mark Llewellyn

• For the time being, at least until IE either disappears or

becomes W3C-compliant (not likely!), you will need to write

your JavaScript to add event listeners in the correct format for

the browser being used by your visitor.

• Fortunately, John Resig (the guy who developed jQuery) has

written a couple of helper functions that will allow your

JavaScript to determine the correct event model to use.

• The next two pages illustrate these two functions and I will also

place them on the course web page for you to download and

use. From a JavaScript perspective the functions are a little

complex, so don’t worry if you don’t fully understand how they

work. Remember that this is the beauty of “black boxing”.

Adding Event Listeners

CIS 4004: JavaScript – Part 3 Page 21 © Dr. Mark Llewellyn

John Resig’s addEvent Helper Function

function addEvent(obj, type, fn) {

if (obj.attachEvent) {

obj['e'+type+fn] = fn;

obj[type+fn] = function(){obj['e'+type+fn] (

window.event);}

obj.attachEvent('on'+type, obj[type+fn]);

} else

obj.addEventListener(type, fn, false);

}

CIS 4004: JavaScript – Part 3 Page 22 © Dr. Mark Llewellyn

John Resig’s removeEvent Helper Function

function removeEvent(obj, type, fn) {

if (obj.detachEvent) {

obj['e'+type+fn] = fn;

obj.detachEvent('on'+type, obj[type+fn]);

obj[type+fn] = null;

} else

obj.removeListener(type, fn, false);

}

CIS 4004: JavaScript – Part 3 Page 23 © Dr. Mark Llewellyn

• Black boxing means that you don’t need to understand how

John Resig’s functions work, just know what they do and how

to use them.

• If you want to add an event listener to the email field form in

the previous example, all you would need to do is call the

addEvent helper function like this:

addEvent(emailField, ‘focus’, doHighLight);

• The three arguments are the element, the event, and the

function to call when the element receives that event. Resig’s

function then takes care of formatting the event registration

appropriately for the browser on which it is running. I’ll use

Resig’s functions from this point on.

Using John Resig’s Helper Functions

CIS 4004: JavaScript – Part 3 Page 24 © Dr. Mark Llewellyn

• Typically, the first thing you want JavaScript to do is set up the

initial state of the page so its ready for use by the visitor.

• A very common part of this initialization process is to attach event

listeners to the elements in the DOM that will respond to user

actions, and you cannot do that until the DOM has loaded into the

browser.

• For example, you might want to attach blur events to the text

fields of a form so you can detect when the user click or tabs away

from them. You can then immediately validate the text the user

entered.

• To help you ensure that you are working with a DOM that actually

exists, a load event is issued when the page is entirely loaded.

The First Event: load

CIS 4004: JavaScript – Part 3 Page 25 © Dr. Mark Llewellyn

• You can use the onload event handler to detect this event and

trigger the JavaScript functions that will set up the page state for

the user.

• The example on the next page illustrates this technique.

• Notice that in the JavaScript that the first line calls the init

function; there are no parentheses after the init function name.

You would normally add parentheses after a function name

because you would want the function to run immediately at that

point in the code.

• However, because you are setting up an event that will call the

function at a later time, you don’t do that here.

The First Event: load

CIS 4004: JavaScript – Part 3 Page 26 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 27 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 28 © Dr. Mark Llewellyn

• If you wrote window.onload= init(); the function would

run immediately (setting the onload property to the result of the

function) and not wait for the page load event to be sent.

• By omitting the parentheses when you assign the init function to

the onload property, the function does not run immediately,

instead, it runs when the load event occurs after the page is fully

loaded.

• Also note that onload is a method of the window object, so you

must always precede it with window, for it to work.

• Note too, that any JavaScript statement not enclosed in a function

and just “loose” on the page runs as soon as it loads. For this
reason, it’s very unusual to place any JavaScript except the onload

event assignment outside of a function.

The First Event: load

CIS 4004: JavaScript – Part 3 Page 29 © Dr. Mark Llewellyn

• After all of the previous discussion, we’ll now look at a simple

example of event listeners that are added to an element when the

page loads.

• In this example case, when the onload event handler calls the

init function, it will add event listeners to a text field.

• As a result of the functions called by these event listeners, the text

field will highlight (its background will be set to green) when the

field receives focus; it will unhighlight (the default white

background be restored) when the focus is removed.

• We’ll develop this example in a systematic manner which might

help you with the techniques you can use in developing your own

projects.

Adding Event Listeners on Page Load

CIS 4004: JavaScript – Part 3 Page 30 © Dr. Mark Llewellyn

• Step 1 in the development process is to ensure that the load event is

triggering the function that will set up the event listeners.

• The markup for this example is shown on the next page, but the only

significant element is the form input field.

• Notice that all I did was set up the onload event to trigger the

function setUpFieldEvents. In order to ensure that the

function is being called properly, I just used a JavaScript alert box to

display. So I now know that the function is being triggered properly
by the onload event.

• As with some of the other examples, I’m including the JavaScript in

the markup file for ease of viewing here…normally it would be

external to the markup.

Adding Event Listeners on Page Load

CIS 4004: JavaScript – Part 3 Page 31 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 32 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 33 © Dr. Mark Llewellyn

• In step 2 we’ll actually add the code to the setUpFieldEvents

function that will add the event listeners. We’ll use Resig’s
addEvent helper function to ensure that our page will render

properly in any browser.

• The markup is shown on the next page.

Adding Event Listeners on Page Load

CIS 4004: JavaScript – Part 3 Page 34 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 35 © Dr. Mark Llewellyn

page loads, user clicks in text

field, alert has displayed –

text field has highlight applied

page loads, user

clicks in text field

CIS 4004: JavaScript – Part 3 Page 36 © Dr. Mark Llewellyn

user clicks outside of

text field, alert displays

indicating loss of focus.

user clicks ok in alert –

text field highlight is

removed

CIS 4004: JavaScript – Part 3 Page 37 © Dr. Mark Llewellyn

• In step 3 we’ll replace the alert code in the functions with the actual

highlighting that we originally intended.

• The markup is shown on the next page.

Adding Event Listeners on Page Load

CIS 4004: JavaScript – Part 3 Page 38 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 39 © Dr. Mark Llewellyn

user clicks in text field –

field is in focus and

thus highlighted

user clicks outside the

text field – field loses

focus and highlighting

is removed

CIS 4004: JavaScript – Part 3 Page 40 © Dr. Mark Llewellyn

• The DOM (Document Object Model) models a web document

as a set of nodes, including element nodes, text nodes, and

attribute nodes. Both elements and their text content are

separate nodes. Attribute nodes are the attributes of the

elements.

• A web document (HTML document) is accessible via the

DOM.

• We actually already did this in some previous examples when

our JavaScript contained the document.write()

statements.

• The document is the object that you want to access/alter,

and using the write() method is one way to do that.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 41 © Dr. Mark Llewellyn

• The document.write() statement adds a text string to the

document and not a set of nodes and attributes, and you cannot

separate the JavaScript out into a separate file –

document.write() works only where you put it in the

HTML.

• What you’d really like is a way to reach where you want to

change or add content, and this is exactly what the DOM and its

methods provide you.

• You can reach elements of the document with three methods:

– document.getElementByTagName(‘p’);

– document.getElementByID(‘id’);

– document.getElementsByClassName(‘cssClass’);

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 42 © Dr. Mark Llewellyn

• Let’s write a small JavaScript example that utilizes these

methods.

• We’ll use a small, almost generic, HTML document to illustrate

the effect these methods have in accessing the DOM.

• The JavaScript that we’ll create will simply count the number of

list items and paragraphs in our document.

• The HTML document is shown on page 43 and the JavaScript is

shown on page 44.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 43 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 44 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 45 © Dr. Mark Llewellyn

Why did we get

this result?

It clearly isn’t

correct.

Answer: Because the document wasn’t

loaded when the JavaScript was

executed so there were no list items and

no paragraphs…yet.

CIS 4004: JavaScript – Part 3 Page 46 © Dr. Mark Llewellyn

Now we’ll get

the correct

results.

CIS 4004: JavaScript – Part 3 Page 47 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 48 © Dr. Mark Llewellyn

• Now let’s modify this code a bit.

• Let’s re-write the JavaScript as a function rather than just

straight-line code.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 49 © Dr. Mark Llewellyn

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 50 © Dr. Mark Llewellyn

Where is the alert?

Why didn’t the function execute?

Answer: Because the function was

never called. JavaScript inside a

function is not executed unless the

function in invoked (called).

CIS 4004: JavaScript – Part 3 Page 51 © Dr. Mark Llewellyn

• We need to modify the JavaScript so that we call our function.

This is shown below:

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 52 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 53 © Dr. Mark Llewellyn

• You can also access each of the elements of a certain name just

like you would access an array. Keep in mind though that

JavaScript array counters begin a 0 and not at 1.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 54 © Dr. Mark Llewellyn

• The getElementsByClassName() and

getElementById(), work in much the same way as we’ve

just illustrated with getElementsByTagName().

• The following example, illustrates the

getElementsByClassName() method.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 55 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 56 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 57 © Dr. Mark Llewellyn

• Examine the HTML document that we’ve been using for our

recent examples.

• All of the <p>, <h1>, <h2>, and elements are

children of the <body> element and they are all siblings.

• The elements are all children of the element and

are siblings to one another. The <a> element is a child of the

third element.

• However, there are even more children. The text inside the <p>,

<h1>, <h2>, , and <a> elements also consist of

nodes in the DOM, and while they are not elements, they still

follow the same relationship rules.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 58 © Dr. Mark Llewellyn

• Every node in the document has several valuable properties:

– The most important property is nodeType, which describes what the node is – an

element, an attribute, a comment, text, or one of several more types

(there are 12 in all – we’ll see them all later). Mostly, though the only valuable
types are nodeType 1 and nodeType 3, where 1 is a element node and 3 is a

text node.

– Another important property is nodeName, which is the name of the element or

#text if it is a text node. Depending on the type of document and the user agent
(browser), nodeName can be either uppercase or lowercase, which is why it is a

good idea to convert it to lowercase before testing for a certain name. Use the
toLowerCase() method of the string object for that, such as:

if(obj.nodeName.toLowerCase()==‘li’){};. For element nodes,

you can use the tagName property.

– nodeValue is the value of the node; null if it is an element, and the text

content if it is a text node. In the case of text nodes, nodeValue can be read and

set, which allows you to alter the text content of the element.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 59 © Dr. Mark Llewellyn

This should change the text

of the first paragraph from

“Paragraph 1” to “Hello

From The DOM”.

CIS 4004: JavaScript – Part 3 Page 60 © Dr. Mark Llewellyn

It didn’t work! Why not?

Answer: It didn’t work (and strangely enough – it didn’t

cause an error either), because the first paragraph is an

element node. If you want to change the text inside that

paragraph, you need to access the text node inside it, or in

other words, the first child node of the paragraph.

See next page.

CIS 4004: JavaScript – Part 3 Page 61 © Dr. Mark Llewellyn

Now we’ve targeted the

element’s text properly.

CIS 4004: JavaScript – Part 3 Page 62 © Dr. Mark Llewellyn

Altered text.

CIS 4004: JavaScript – Part 3 Page 63 © Dr. Mark Llewellyn

• The firstChild property that we utilized in the previous

example is a shortcut. Every element can have any number of

children, listed in a property called childNodes.

• Here are a few important aspects about childNodes:

– childNodes is a list of all the first-level children of the element. It

does not cascade down into deeper levels.

– You can access a child element of the current element via the array
counter or the item() method.

– The shortcut properties firstChild and lastChild are easier to use

versions of element.childNodes[0] and

element.childNodes[element.childNodes.length-1].

– You can check if an element has any children by calling the method
hasChildNodes(), which returns a Boolean value.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 64 © Dr. Mark Llewellyn

• Let’s modify our running example to access the element and obtain

information about its children.

• The JavaScript shown below, utilizes the childNodes property and the

hasChildNodes() method.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 65 © Dr. Mark Llewellyn

• We created an empty string called DOM string and then check for DOM

support and whether the UL element with the right id attribute is defined.

• Then we test whether the element has child notes and, if it does, store them in

a variable named ch.

• Next we loop through the variable, which automatically becomes an array, and

add the nodeName of each child to the DOMstring, followed by a line break.
Let’s modify our running example to access the element and obtain

information about its children.

• The JavaScript shown below, utilizes the childNodes property and the

hasChildNodes() method.

Accessing the Document via the DOM

CIS 4004: JavaScript – Part 3 Page 66 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 67 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 68 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 69 © Dr. Mark Llewellyn

• The DOM enables you to programmatically access a

document’s elements, allowing you to modify its contents

dynamically using JavaScript.

• The HTML5/CSS/JavaScript example we’ll use is available

on the course website, I did not include all of the markup in

these notes. The example will allow you to traverse the DOM

tree, modify nodes and create or delete content dynamically.

• The CSS class highlighted is applied dynamically to

elements in the document as they are selected, added, or

deleted using the form at the bottom of the document.

• As you play around with this example, be sure to do it in the

developer tool so that you can see the DOM tree as well.

Traversing And Modifying A DOM Tree

CIS 4004: JavaScript – Part 3 Page 70 © Dr. Mark Llewellyn

• The HTML5 document is manipulated dynamically by

modifying its DOM tree.

• Each element has an id attribute, which is also displayed in

square brackets at the beginning of the element (so you can

see which element is which). (See next page for snippet of

markup.)

• The click event listeners are registered in the JavaScript

(available on the course website) for the six buttons that call

corresponding functions to perform the actions described by

the button’s values.

Traversing And Modifying A DOM Tree

CIS 4004: JavaScript – Part 3 Page 71 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 72 © Dr. Mark Llewellyn

• The JavaScript begins by declaring two variables.

• Variable currentNode keeps track of the currently

highlighted node (the initially highlighted node is the

[bigheading], the functionality of each button depends

on which node in the document (DOM tree) is currently

selected.

• The function start registers the event handlers for the

buttons, then initializes the currentNode to the <h1>

element, the element with id = bigheading.

• Note that the function start is called when the window’s

load event occurs.

Traversing And Modifying A DOM Tree

CIS 4004: JavaScript – Part 3 Page 73 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 74 © Dr. Mark Llewellyn

• The JavaScript variable idcount is used to assign a unique id

to any new elements that are dynamically created by the user.

• The remainder of the JavaScript contains the event handling

functions for the buttons and two helper functions (switchTo

and createNewNode) that are called by the event handlers.

• Over the next few pages, I’ll explain how each of the buttons

and its corresponding event handler works. Before reading on,

you should download the markup, the style sheet, and the

JavaScript files and play around with the page a bit to get a feel

for what’s happening with the page as the user manipulates the

page.

Traversing And Modifying A DOM Tree

CIS 4004: JavaScript – Part 3 Page 75 © Dr. Mark Llewellyn

• The first row of the form allows the user to enter the id of an

element into the text field and click the Get By id button to

find and highlight the element.

• The button’s click event calls function byId().

Finding and Highlighting an Element Using
getElementById, setAttribute and getAttribute

// get and highlight an element by its id attribute

function byId()

{

var id = document.getElementById("gbi").value;

var target = document.getElementById(id);

if (target)

switchTo(target);

} // end function byId

CIS 4004: JavaScript – Part 3 Page 76 © Dr. Mark Llewellyn

• First, the byId()function uses getElementById to assign

the contents of the text field to the variable id.

• Next , the byID() function uses getElementById to

find the element whose id attribute matches the value of

variable id and assigns this to the variable target.

• If an element is found with the specified id, and object is

returned; otherwise, null is returned.

• Next, the function checks to see whether target is an object

(any object used as a boolean expression is true, while null

is false). If target evaluates to true, the switchTo()

helper function is called with target as its argument.

Finding and Highlighting an Element Using
getElementById, setAttribute and getAttribute

CIS 4004: JavaScript – Part 3 Page 77 © Dr. Mark Llewellyn

• The switchTo() helper function is used a lot in this

JavaScript to highlight an element in the page. The current

element is given a yellow background (via the CSS class

highlighted).

• The DOM element methods setAttribute and

getAttribute allow you to modify and get an attribute’s

value, respectively.

• The function switchTo function uses the setAttribute

method to set the current node’s class attribute to the empty
string. This clears the class attribute to remove the

highlighted class from the currentNode before the new

node is highlighted.

Finding and Highlighting an Element Using
getElementById, setAttribute and getAttribute

CIS 4004: JavaScript – Part 3 Page 78 © Dr. Mark Llewellyn

• The last thing the byID function does is uses the

getAttribute method to get the currentNode’s id

and assign it to the input field’s value property.

• This isn’t necessary when this helper function is called by

byID, but as you’ll see later, other functions call switchTo

as well. In these cases, this line ensures that the text field’s

value contains the currently selected node’s id.

• Notice that setAttribute was not used to change the

value of the input field. Methods setAttribute and

getAttribute do not work for user-modifiable content,

such as the value displayed in an input field.

Finding and Highlighting an Element Using
getElementById, setAttribute and getAttribute

CIS 4004: JavaScript – Part 3 Page 79 © Dr. Mark Llewellyn

Initial Page

CIS 4004: JavaScript – Part 3 Page 80 © Dr. Mark Llewellyn

Initial Page – Shown

in Opera Dragon Fly

(developer tools)

CIS 4004: JavaScript – Part 3 Page 81 © Dr. Mark Llewellyn

User enters “para3” in the text field for the “Get By Id” button.

When they click the button the value the user entered into the text field
is extracted and the byId() function is triggered.

CIS 4004: JavaScript – Part 3 Page 82 © Dr. Mark Llewellyn

User enters “para3” in the text field for the “Get By Id” button.

When they click the button the value the user entered into the text field
is extracted and the byId() function is triggered.

CIS 4004: JavaScript – Part 3 Page 83 © Dr. Mark Llewellyn

• The second and third rows of the form allow the user to create

a new element and insert it before or as a child of the current

node, respectively.

• If the user enters text in the second text field and clicks the

Insert Before button, the text is placed in a new

paragraph element, which is inserted into the document before

the currently selected element.

• The Insert Before button’s click event calls function

insert().

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: JavaScript – Part 3 Page 84 © Dr. Mark Llewellyn

• The insert() function calls the createNewNode()

function , passing it the value of the “ins” input field as an

argument.

• The helper function createNewNode() creates a paragraph

node that contains the text passed to it.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: JavaScript – Part 3 Page 85 © Dr. Mark Llewellyn

• Function createNewNode() creates a <p> element using

the document’s createElement method, which creates a

new DOM node, taking the tag name as an argument.

• The createElement method creates an element…it does

not insert the element on the page.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: JavaScript – Part 3 Page 86 © Dr. Mark Llewellyn

• To create the new element, a unique id for it is created by

concatenating the string “new” with the current value of

idcount.

• The setAttribute function is then called to set the id of the

new element.

• The value of the text is concatenated with the square brackets

used to identify the nodes to the user.

• Then the document’s createTextNode method is called to

create a node that contains only text. This new node is then used

as the argument to the appendChild method, which inserts a

child node after any existing children of the node on which it is

called.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: JavaScript – Part 3 Page 87 © Dr. Mark Llewellyn

• After the <p> element is created by createNewNode that

function returns the new node to the insert function, where

it’s assigned to the variable newNode.

• The newNode is then inserted before the currently selected

node.

• The parentNode property contains a node’s parent. This

property is used in the insert function to get the current node’s

parent. Then the insertBefore method is invoked on the

parent node with newNode and currentNode as its

arguments. This causes newNode to be inserted as a child of the

parent directly before currentNode.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: JavaScript – Part 3 Page 88 © Dr. Mark Llewellyn

• Finally, the switchTo helper function is called to set the

highlighted class on the newly created element.

• The input field and button on the third line of the input form

allows the user to append a new paragraph node as a child of the

current element.

• This is done in a similar manner to the Insert Before

button’s insert function. However, in this case the function

appendNode creates the new node and inserts it as a child of

the current node. Examine the JavaScript more closely to see

how this mirrors the insert function and also how it differs.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: JavaScript – Part 3 Page 89 © Dr. Mark Llewellyn

User selects [para3] then enters new

text and clicks Insert Before button.

HTML effect shown on next page.

CIS 4004: JavaScript – Part 3 Page 90 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 91 © Dr. Mark Llewellyn

• The next two buttons on the input form provide the user with the

ability to replace the current element with a new <p> element or

simply to remove the element entirely.

• When the user clicks the Replace Current button, the

function replaceCurrent is called.

• In function replaceCurrent, the createNewNode helper

function is called in much the same manner as it was when the

InsertBefore or AppendChild buttons were clicked.

• The user’s text is retrieved from the input field in the form and

the parent of the current node is determined, then the

replaceChild method is invoked on the parent.

Replacing and Removing Elements Using replaceChild

and removeChild

CIS 4004: JavaScript – Part 3 Page 92 © Dr. Mark Llewellyn

• The replaceChild method takes two arguments, the first

of which is the new node to be inserted, and the second is the

node to be replaced.

Replacing and Removing Elements Using replaceChild

and removeChild

CIS 4004: JavaScript – Part 3 Page 93 © Dr. Mark Llewellyn

User selects [para1] then enters new

text and clicks Replace Current button.

HTML effect shown on next page.

CIS 4004: JavaScript – Part 3 Page 94 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 95 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 96 © Dr. Mark Llewellyn

• Clicking the Remove Current button calls the remove function in

the JavaScript which removes the currently selected element

entirely and highlights the parent.

• If the node’s parent is the body element, an error message is

displayed to indicate that a top level element cannot be deleted.

• The next page illustrates this error condition.

Replacing and Removing Elements Using replaceChild

and removeChild

CIS 4004: JavaScript – Part 3 Page 97 © Dr. Mark Llewellyn

User selects [para1] then clicks

Remove Current button. JavaScript

pops up the alert that a top-level

element cannot be deleted.

CIS 4004: JavaScript – Part 3 Page 98 © Dr. Mark Llewellyn

• In general, parent.removeChild(child) looks in a

parent’s list of children for child and removes it.

Replacing and Removing Elements Using replaceChild

and removeChild

CIS 4004: JavaScript – Part 3 Page 99 © Dr. Mark Llewellyn

User selects item2 then clicks Remove

Current button. HTML effect shown

on next page.

CIS 4004: JavaScript – Part 3 Page 100 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 3 Page 101 © Dr. Mark Llewellyn

• The final piece of functionality in this DOM demo is the button

that allows the user to identify the parent of the selected element.

• This is done by calling the parent function. This function

simply gets the parent node, again making sure its not the body

element since we will not allow selecting the entire body

element.

• When the parent node is determined, the switchTo function is

called to highlight the parent node.

• This sequence is illustrated by the next two slides.

Determining the Parent Element

CIS 4004: JavaScript – Part 3 Page 102 © Dr. Mark Llewellyn

User selects [item2] then clicks Get

By id. The item2 element is

highlighted. Then the user clicks the

Get Parent button. HTML effect

shown on next page.

CIS 4004: JavaScript – Part 3 Page 103 © Dr. Mark Llewellyn

The parent of [item2] is now highlighted

and identified in the get By Id text field.

